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Linear mappings
Eigenvalues and Eigenvectors

Linear Mappings
to Linear mappings are functions defined
on vector spaces that preserve linear

combinations

Definition
T mapping transformation

Given two vector spaces V and W

we say that T V W is a linear

mapping if it verifies ture V and taek
a Trutv TCU Tcu Iti EV

b T avi x Ttu Tail Thi EW










































Example The mapping T.RS

R2definedbyTffxyJ Y
is linear

I fait fu Hit fi
Ii

tureen tf II D Ii
x
Uy

t p a Ttu tptCv










































Example The mapping D P IP defined

by Dpw p'cx is linear

p 9ER ABER
ein

1 apt pg aptpg xp tpg
a DptPDF










































Example Let A be a matrix of size

Mxn The mapping T.IR Rm defined

by T E AI is linear

A Itg A It Aj
A xx A

Akitoye
LAI 1pAif

Tl D Htt X's
a

1 I A I

Using the definition

Showing that it can be written as AI










































Example The mapping filth R2 defined
by f

g Yy
is not linear

We can show that it does not preserve

scalar multiplication

44 D'll D t.s.tt o
5 f 5

4

45171 stffi

ot Ip T is linear

1 T Ou Ow

2 V c a 2 T p a

3 V C s m 3 T p s m










































Properties of linear mappings
Let T V W be a linear mapping
then

1 T Ou Ow

2 T f ie TI uit it I a

3 T aint azitzt tan Un aFluitt tannin
1 tutti

Example The mapping f 11251122 defined

by tf g f tf
is not linear

since 4 11 414 a

fee A
Itb

4Mt L it










































Kernel and Image of a linear mapping

Definition
Let T V W be a linear mapping
He define the kernel and image
of T respectively as follows
Ker F LIEV TIE 0 EV
IMT THEW I EV EW

f TyEW Ty TCI for some E EV

to Ker T is a subspace of V

B Im T is a subspace of W

KerT is a subspace

Iif EKer T xx tpyekert.TL
O.TCyy o

THE BIH xTLE xpTcg
a xp0 0










































IMT is a subspace

TrivelmT airtfielmTdefof int T is linear clefof Imt

Iiyev a TCE FEEV xatpv T E
r Tty f

xu tpv xTCx7tpTCy
T xEtpiy

E

TCI AI

f W

P Ri
KerT NuhA

O oi i
f AI

1 is surjective 1mT W










































J
Theorem

et T V 2W be a linear mapping and

let oh ik ten be a system of

generators of V Then ThisThiel Tian

is a system of generators of IMT

V Span tryin in Im F Span Tca Taiz taint

Example Find the kernel and image of
the linear mapping f

112331123

defined by TEI AI

kerf NulA

tf D I bunt Cola
T V W

H

A










































ai L

Nul A kerf Span

co mt span
11 14 14

spank
t.EE
iiYy

g if
If we apply the previous theorem

a
fool

a I ui.IE










































flat

g

Hint

f
M

f
MIHAI

Imt Tle Itv AI Itv

X a it xzazt txnan I TV

Col A
Ttx AI

Ker F LIEV TCH I Itv Ato

Nal A










































Injective surjective and bijective mapping

A function f A B is injective
if and only if
Vxiy.CA if Xty then flat fly
or equivalently
VxYEA if fCxtfly then y

f is injective i if fix y has at most 1 Sol VJ
B A function f A B is surjective if
and only if
Vb EB there exists acA such that

b fca
f is surjective iff f I g has at least 1 sol V j

A function is bijective if and only if
it is both injective and surjective

f is bijective iff f x galways has a unique solution










































Example
T bi Tfx I _Iz

bi b 5 Tle 0 I I

i x

55
Not surjective

V w

Example
y b i Th

E Iz
I _Iz

I

W
V










































Example
T go.tl fEiEa

iii
in

W

Example
T

si's
c iii

me

b3

V W The iy

we Thi AI if










































Theorem

Let T V 7W be a linear mapping Then

L T is injective if and only if kerf 253
2 Tis surjective if and only if 1mF W

Other characterizations
For any given linear mapping f V W
we have

1 f is injective if and only if for each

linearly independent set tu uh In

the set fail f lui flint is

linearly independent

f is injective f preserves lin independence










































suppose that f is injective
NTS if lui fun is Lin ind

then fail faint lin ind

c fCui tczflitz t t cuffin Ew

f avi tozuit tarun ow

Ev

f is injective Ciu taut tannin I

Ey In is linind C Cz Cz Cn o

Suppose If fluid flan is lin dep
then lui Un3 is tin dip

NTS f is injective kerf I03
EE kerf fix 7 5

Lin dep 53 1 fix 3 3 is e d

I E










































2 f is surjective if and only if for each

system of generators of v lui UI In3

the set 3 flail fluid faint is a

system of generators of W

3 f is bijective if and only if for each
basis of V lui UI um the set

fate feta fluin is a basis of

W

Operations with linear mappings
Given two linear mappings f g V w

and a scalar 2E IR we define the

operations

f tg V W f g CEI fix Hgtx
af V W H f I Ifk










































Theorem YW T linearmapping T v w

With the operations defined above

the set of linear mappings between

two vector spaces V and W is itself

a vector space

Moreover the set of linear mappings
between V and W has additional

structure

1 I E

Theorem 1 I OI

Given two linear mappings f V W

and g W U their composition

gof V U defined by gof I gffia
is also a linear mapping










































Recall that if a function is bijective
then it has an inverse function
In particular if fiV w is a bijective
linear mapping then there exists

a function f ti w V such that

V TEV f f F T Idv V W V

the W f f in D W V w
11

Idw

Theorem

For each bijective linear function

f V 7W its inverse mapping f w V

is also a linear mapping That is

f lair BJ af ca t f o tu r EW

Fa GEIR

a










































Linear mappings and matrices
In this section we will see that linear

mappings between finite dimensional

vector spaces have a matrix representation

The mechanism to achieve this matrix

representation consists in using coordinates

with respect to some basis of V and W

More concretely let TiV w be a linear

mapping let B be a basis of V and let

C be a mapping of W For any rector

I EV the image of I under T is TIEW

The coordinates of E and T E with respect

to the corresponding bases are ITB

and TI Ic We will see that there

exists a matrix MEB such that










































TI c MFB I 3ps TLE

The matrix MFB is the matrix representation

of T when we fix the bases B and C This

matrix converts the coordinates I B into

the coordinates Tx Ic

DThe notation MFB has been chosen to
remark that the matrix represention

of T depends of the bases B and C

In other words it changes with the choice

of bases

Matrix associated to a linear mapping

In this section we will construct the matrix

associated to the linear mapping T V 2W










































We start by fixing a basis for V and

W Let B be a basis for V and let C

be a basis for W In particular let

B hbi 52 In

Then we can represent every IEV as a

linear combination of B using the

coordinates IIIB That is

I _x b it xz5ztXzbz t 1 Xn bn j LI B

Now using the linearity of T we have

TI T X b it x5bztx5bzt tin bn

X T bi txztlba.lt zTlb3 t txnTCbn

Since TI is a vector of W we can

take the coordinates of TE with respect
to the basis C

Therefore










































TI c x Tibi ctxz Ttbd c t t Xn Thin c

This last equation can be written as a

matrix equation
Tx c Tibi c Tibi c Tibor I B

Comparing with the equation Ctx METIIB
at the beginning of the section we see that

MEB Tibi c tcb c TCb n c

Matrix equation of a linear mapping
Let V and W be two vector spaces of

dimensions n and m respectively and let

B and C be bases of V and W respectively

Given a linear mapping T V W the

matrix equation of T with respect to B

and C is 4

g TI c MFB ITB TCI Ty
9










































which given the coordinates IIB of a

vector I EV with respect to B computes

the coordinates Tac of its image TI

with respect to C

MFB is the matrix associated to T with

respect to B and C that is the matrix

of size Mxn given by
MFB ft lbDc LTCbd c LTCb n c

BE The notation MFB has been chosen so that

in the equation THE MFB IIIB everything
indexed with B is collected on the right
and everything indexed with C is collected

on the left
T R2 7112

B c B
Ide I I g LITT V v

p R
Ez Ez Id










































E

B A special case is when V W Nevertheless

B and C may not be the same bases

So a second special case when V W and
TLE A IB C g f R E

E MEEE

Example Let fi 1122 1123 be a linear mapping
such that

tinyp t.ly
We would like to write the matrix associated

to f with respect to Ez and Ez the

canonical bases of 112 and 1123 respectively
Codomain µDomain

E3 Ez

Mf Eff e ft Ies










































TBH Il D

ie










































no
Example Let D B 1B be the linear mapping

defined by Dpcx p Cx Consider the

canonical basis B 1,4 3 3 Write the

Matrix associated with D with respect to

B the second special case discussed above

M
3 B

DL B Dx B Dx B DMB
O B L B 2x B 3 2

B

i S

I It 3 2 TI D 11 3 2 6X

Tx B ME e

derivative of IEP
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TEIB

Ogg

6 x










































Example Let T B Dy be the linear mapping

defined by Tpcx7 xpCx Consider the

bases B I Itx xtx2 x2tx3 and

C fl X x x3 x4 of Pz and 1174 respectively










































Associated matrix Injectivity and Surjectivity

In this section we will relate some properties

of a linear mapping with some properties

of its associated matrix

Consider the linear mapping T V w between

to finite dimensional vector spaces Since

we can associate a matrix with T

we will use the tools developed for
matrices to study the mapping T

For this we need to fix a basis for V

B Sibi Tsa ibn
We will also need to fix a basis for W C










































With these two bases we can construct

MFB the matrix associated with T such

that

TE c MFB ITB KIEV

Recall that the matrix MEB is given by
MFB CT bD c TCbd c TTbn c

We have the following facts studied

previously

Studying a set of vectors is equivalent
to studying its coordinates

Since B is a linearly independent set

T is injective if and only if
T bi TC52 TI bn is a linearly

independent set










































Since B is a generating system of V
T is surjective if and only if
Ttb T1521 TTbn is a generating

system of W

i First we will study the relationship between

the injectivity of T and the pivot columns of MFB

We know that T is injective if and only if
CITIDc CtTbdIc Ttbnbc is linearly

independent But these vectors are the columns

of MF Therefore we have

T is injective if and only if the columns of
MiB are linearly independent equivalently
all the columns are pivots










































B Tis injective if and only if b EMEK IIB
IE IMT has a unique solution

Clearly the number of pivots in MFB is

independent of the chosen bases B and C

B We can relate the injectivity of ME
B with

the rank of M
B

rankMFB pivots columns ofME'B dim V
T
byinjectivity of T

all the columns are pivots

Example Let fi 1122 1123 be a linear mapping
such that

tiny t.ly
We have already found the associated matrix

with respect to the canonical bases










































I H L

We can see that all the columns of ME
are pivots equivalently rankME

E
dim1122 21

therefore f is injective

Example Let D Pz 1B be the linear mapping
defined by Dpcx p Cx As we have

previously seen the associated matrix with

respect to the standard basis B is

i










































This matrix only has 3 pivots and one nonpivot

column Therefore D is not injective
Equivalently D is not injective because

rank MDB'B 3 dim 113 4

Example Let T B Dy be the linear mapping

defined by Tpcx7 xpCx Consider the

bases B I Lt x X 1
2 x2tx3 and

C l X x x3 x4 of Pz and 1174 respectively

The associated matrix is

MFB O O O O I 0 O O

I 1 O O O l O 0

o o n o o

O O I 1 O O O I

0 O O I 0 O O O










































In this case every column of MFB is a pivot

and therefore T is injective Equivalently
T is injective because

rank ME'B 4 dim 1B

Now we will study the relationship between

the surjectivity of T and the pivots of ME

We know that T is surjective if and only if
TcbDc Ttb273g TCbn c is a system of

generators of RM where m dimW In other

words the matrix equation
To c MEB I B TseW

should always have a solution for any DEW
For this to be true each row of ME

B must

have a pivot in order to avoid contradictions

of the form 0 1










































T is surjective if and only if the columns

of MFBconstitutes a system of generators

of 112M m dimW equivalently each row

of MFB has a pivot

BT is surjective if and only if the equation
5 c MFB ITB always has a solution for

any DEW
DWe can relate the surjectivity of T with
the rank of MFB

rankME'B pivots rows ofME'B dim W9

by the surjectivity

of T each row has

a pivot










































Example Let fi 1122 1123 be a linear mapping
such that

tinyp t.ly
We have already found the associated matrix

with respect to the canonical bases

H L

We can see that not every row of ME
EZ

has a pivot therefore f is not surjective
Equivalently f is not surjective because

rank ME
EZ

2 1 dim 1123 3










































Example Consider the linear mapping T
1125 21123

defined by TCE AI where

a
I L

Clearly the matrix associated to T with respect

to the canonical bases is A

ai L

Since every row of A has a pivot we have

that T is surjective Equivalently T is

surjective since

rank A 3 dim 1123










































To finish this section it must be remarked
that T is bijective if and only if every
now and every column of MFB has a pivot
For this it is necessary that MFB is square
and invertible

Moreover a mapping can be both not injective

and not surjective An example of this

is the mapping D B Ps defined by
Dpcx p Cx










































Associated matrix and change of bases

Let V and W be two vector spaces and

let T V W be a fixed but arbitrary
linear mapping

Recall that the matrix associated with

T depends on the bases chosen for V and W

Nevertheless the linear mapping should not

depend on our choice of bases

This implies that there is a relation between

two matrices associated with T but with

respect to distinct bases

Indeed these relations exist and constitute the

center of attention of this section
































Recall that V and W are vector spaces and

the linear mapping T V W is fixed but

arbitrary

Let's choose two distinct bases for V B and B
and two distinct bases for W C and I
Then we have the following relations between

coordinates

i B Pn I B TEV
B B

Tv c Iz DIE WEW

where BIBI and CEE are the corresponding

matrices of change of bases



Recall that MFB denotes the matrix associated
with T with respect to B and C and

MEB denotes the matrix associated with

T with respect to B and E

We can conveniently summarize the relation

between these matrices with the following

diagram
Wttv

in c MFB i B

P
Pc c

ifeng.atns
B B

E BWIE Mt JIB



Our goal is to find a relation between
MFB and MFB To do this we proceed

as follow
Consider the matrix equation associated

with T with respect to the bases B and C

To c MFB T B Vie V

Vote that To c Ie To E an

JIB BIB I Substituting these relations

in the above equation we obtain

Ie To e ME'BBIB hips

Lastly multiplying both sides of this equation

by P P we obtain
c c E E c



To e MEB BIZ TIE

Comparing this last equation with

tote MEB I B we deduce

MFB P MEB p
E c B B

change of bases formula

for the matrix associated

with a linear mapping T

This formula is the relation between ME'B and

MFB that we were looking for

Observe how the notation can help us

remember the formula above as follows



On the left hand side of the formula
we have M

5
with superindeces E and Bi

On the right hand side these same indices

are on the exterior while B and C

appear on the interior Moreover notice

that the subindex B y below the superindex

C and similarly the subindex C y below

the super index C

We can also use the diagram

w v

in c MFB i B

P
it

ifeng.atnsBPmIwJe MEB JIB



to remember how to write the change of
bases formula Notice that the arrow connecting

directly B and E is labeled ME Also

notice that B and I can be connected

alternatively via B B c c

Writing from right to left the labels

of this alternative path we get ME P
B Be

Since the direct path and the alternative

path connect the same two vertices

B and I we will say that they are

equal i M
5

MIBpapers obtaining
the desired change of bases formula



Example Let fi 1122 1123 be a linear mapping
such that

tinyp t.ly
We have already found the associated matrix

with respect to the canonical bases

l

Now consider the following bases for
R2 and 1123

a Hill D Hill o fill



We will compute the matrix associated with

f with respect to B and C



Example Consider the linear mapping T
112531123

defined by TCE AI where

a
I L

Clearly the matrix associated to T with respect

to the canonical bases Es and Ez is ME A

Consider the bases of 1125 and 1123

B I 0 O L O

i

qq.cs.iep



The matrix associated with T with

respect to B and C is given by


